Análise das solicitações impostas ao banco de capacitores devido à energização e manobras dos disjuntores

Este Relatório Técnico apresenta os estudos das solicitações impostas ao banco de capacitores 88/138 [kV] da subestação de Piratininga II, devido à energização do banco e à manobras de chaves seccionadoras e disjuntores.

Feito por :

Pesquisador Doutor Francisco Antonio Reis Filho.

Professor Doutor Giovanni Manassero Júnior.

Farfilho Consultoria Comércio e Representações LTDA – SP, 08 de setembro de 2009.

REV1

Índice

1.	Objet	ivos		4		
2.	Intro	dução		5		
3.	Meto	Metodologia				
	3.1.	ção da metodologia	5			
	3.2.	Descri	ção da subestação de Piratininga II	5		
		3.2.1.	Equivalentes de Thévenin	6		
		3.2.2.	Linhas de transmissão	7		
		3.2.3.	Transformadores	7		
		3.2.4.	Chaves controladas	8		
		3.2.5.	Pára-raios	8		
		3.2.6.	Cargas	9		
		3.2.7.	Bancos de capacitores	9		
	3.3.	Descri	ção dos casos de simulação	9		
		3.3.1.	Energização do banco de capacitores	10		
		3.3.2.	Abertura dos disjuntores na subestação durante curtos-circuitos	12		
		3.3.3.	Manobras dos disjuntores na subestação	17		
4.	Resul	tados	Erro! Indicador não d	definido.		
	4.1.	Energiz	zação do banco de capacitores	19		
	4.2.	Abertu	ra dos disjuntores na subestação durante curtos-circuitos	24		
	4.3.	Manob	ras dos disjuntores na subestação	31		
5 -	Dimen	sioname	ento dos Para-Raios e Coordenação de Isolamento	33		
6. C	Conclus	sões		35		

1. Objetivos

O objetivo deste relatório é estudar o impacto da operação do banco de capacitores shunt de 28 MVAR/88 KV localizado na barra de 88 KV da SE Piratininga. Em seguida, analisar os aspectos transitórios de chaveamento e suas conseqüentes sobretensões provenientes dessas manobras na operação da SE Piratininga. Para tal foram tomados como literal referência o circuito montado no ATP e entregue a Alpha Techno Engenharia LTDA. Convém ressaltar que não foram questionadas nem verificadas a veracidade dessas ligações bem como dos respectivos valores dos parâmetros apresentados.

2. Introdução

A introdução deste relatório é dividia na apresentação dos itens listados a seguir, que são os aspectos de metodologia, sua descrição, e a apresentação suscinta da SE Piratininga. A seguir são descritos os equivalentes de Thevénin utilizados, os modelos das linhas de transmissão, dos transformadores, das chaves controladas , dos para-raios, das cargas e dos bancos de capacitores. Em seguida, são apresentadas as diversas condições de simulação efetuadas e por último as conclusões observadas.

3. Metodologia

Neste capítulo é apresentada a metodologia utilizada para a análise das solicitações impostas ao banco de capacitores 88/138 [kV] da subestação de Piratininga II. Detalhes da metodologia são apresentados nos itens a seguir.

3.1. Descrição da metodologia

A metodologia adotada para a análise das solicitações impostas ao banco de capacitores 88/138 [kV] da subestação de Piratininga II, devido às condições de energização do banco em questão, às condições de manobras dos disjuntores quando da ocorrência de eventos de sobrecorrente e às condições de manobras das seccionadoras consistiu na elaboração de arquivos de simulação no ambiente ATPDraw, para simulação no software ATP – *Alternative Transient Program*.

Neste contexto, foi efetuada a modelagem da subestação Piratininga II a partir de um arquivo de simulação do ATPDraw previamente fornecido, que contém os dados sobre os elementos que compõem esta subestação. A seguir são apresentados detalhes desse arquivo.

3.2. Descrição da subestação de Piratininga II

A figura 1 ilustra o arquivo de simulação em formado ATPDraw, que contém os dados da subestação de Piratininga II. Este arquivo foi utilizado como base para a análise das solicitações impostas ao banco de capacitores instalado na barra de 88 [kV] da subestação.

Figura 1: Caso base contendo os dados da subestação de Piratininga II

3.2.1. Equivalentes de Thévenin

Os equivalentes de Thevenin que representam as barras de Ibiúna, Xavantes, Embu Guaçu e Interlagos são compostos de fontes de tensão trifásicas ideais, implementadas no ATPDraw a partir do modelo *TYPE 14* do ATP, em série com linhas de transmissão simétricas e acopladas magneticamente, implementadas no ATPDraw a partir do modelo *TYPE 51* do ATP.

Os dados desses terminais estão apresentados na tabela a seguir.

Terminal	Potência de curto- circuito 1¢ [MVA]	Potência de curto- circuito 3¢ [MVA]	Tensão de linha [kV]
Xavantes	5055∠85°	3881∠86°	345∠60°
Embu Guaçu	8869∠85°	9277∠87°	345∠60°
Ibiúna	16705∠88°	13422∠88°	345∠60°
Interlagos	3432∠89°	3246∠89°	345∠60°

Tabela 1: Dados dos terminais de Xavantes, Embu Guaçu e Ibiuna

3.2.2. Linhas de transmissão

As barras de Ibiúna, Xavantes e Embu Guaçu estão conectadas à barra de Interlagos através de três linhas de transmissão de circuito duplo, idealmente transpostas, sem a modelagem do efeito das indutâncias mútuas entre ambos os circuitos. A barra de Interlagos por sua vez, está conectada à barra de Piratininga II através de outra linha de transmissão de circuito duplo, idealmente transposta, também sem a modelagem do efeito das indutâncias mútuas entre os circuitos.

Essas linhas de transmissão foram implementadas no ATPDraw utilizando o modelo de linhas idealmente transpostas, de parâmetros distribuídos conforme o modelo *Clarke* do ATP, e estão detalhadas na tabela a seguir.

Linha	Comprimento [km]	Dados	
Xavantes – Interlagos	7,4		
Embu Guaçu – Interlagos	22,4	$R0 = 0,34741 \text{ e R1} = 0,01757 [\Omega/km]$ $X0 = 1,405 \text{ e X1} = 0,287 [\Omega/km]$ C0 = 3,030632 e C1 = 5,9115 [uMbo/km]	
Ibiúna — Interlagos	61		
Interlagos – Piratininga II	1,5	$\begin{array}{l} \text{R0} = 0,36443 \text{ e } \text{R1} = 0,03463 \left[\Omega/\text{km}\right] \\ \text{X0} = 1,48 \text{ e } \text{X1} = 0,363 \left[\Omega/\text{km}\right] \\ \text{C0} = 2,636299 \text{ e } \text{C1} = 4,64604 \left[\mu\text{Mho/km}\right] \end{array}$	

Tabela 2: Dados dos linhas de transmissão utilizadas nas simulações

3.2.3. Transformadores

Para a modelagem dos três transformadores abaixadores da subestação de Piratininga II foi implementado o modelo *General saturable transformer* do ATP no arquivo base do ATPDraw. Os transformadores implementados a partir desse modelo são trifásicos e possuem três enrolamentos. Os enrolamentos primário e secundário dos transformadores estão na configuração estrela aterrada e o enrolamento terciário está na configuração delta.

Os dados empregados no modelo do transformador estão apresentados na tabela 3.

Tabela 3: Dados dos transformadores utilizados nas simulações

Enrolamento	Tensão [kV]	Impedância de curto-circuito [Ω]
Primário	199,19 (de fase)	0,7292 + j36,46
Secundário	50,807 (de fase)	0,0397 + j1,985
Primário	13,8 (de linha)	0,0211 + j1,054

3.2.4. Chaves controladas

Os eventos de energização do banco de capacitores e manobra dos disjuntores da subestação de Piratininga II foram efetuados com o emprego de dois tipos distintos de chave controlada do ATP.

Para os eventos de energização do banco e curto-circuito foram implementadas as chaves estatísticas no arquivo base do ATPDraw a partir do modelo *Statistic switch* do ATP. Para os eventos de abertura de disjuntor na presença de curtos-circuitos foram implementadas as chaves controladas por tempo no ATPDraw a partir do modelo *Threephase time-controlled switch* do ATP. As configurações das chaves controladas serão detalhadas no próximo capítulo.

3.2.5. Pára-raios

O pára-raios empregado nas simulações dos eventos de energização do banco de capacitores e abertura de disjuntor foi implementado no arquivo base do ATPDraw a partir do modelo *Exponential current-dependent resistor – TYPE 92* do ATP. Este equipamento foi instalado na barra de 88 [kV], em paralelo com o banco de capacitores instalado nessa barra. A figura 2 ilustra a curva típica deste pára-raios.

Figura 2: Curva v x i do pára-raios utilizado

3.2.6. Cargas

Os eventos de energização dos bancos de capacitores foram efetuados considerando a barra de 88 [kV] sem carregamento algum. Para os eventos de curto-circuito, o arquivo base do ATPDraw foi modificado para incluir nessa barra uma carga indutiva cuja potência nominal é 200 [MVA] e fator de potência 0,85. Portanto:

 $z_{carga} = 32,912 + j20,397 \ [\Omega]$

3.2.7. Bancos de capacitores

Os bancos de capacitores utilizado nas simulações de energização e manobra de disjuntores foi implementado no caso base de simulação do ATPDraw a partir do modelo *RLC branch threephase, wye coupling* do ATP. Para tanto considerou-se que a potência total do banco de capacitores é de 28,8 [MVA] e os capacitores estão conectados em estrela. Sendo assim:

 $y_{capacitor} = j3719 \ [\mu U]$

Vale ressaltar que o emprego de capacitores ideais nas simulações do ATP pode resultar em oscilações numéricas e, conseqüentemente, imprecisões numéricas nos cálculos durante as simulações. Desta forma, para minimizar o efeito das oscilações numéricas foi acoplada aos capacitores uma resistência série de valor bastante reduzido.

 $r_{s\acute{e}rie} = 0,001 \ [\Omega]$

3.3. Descrição dos casos de simulação

Para a análise das solicitações impostas ao banco de capacitores devido à energização e manobras dos disjuntores da subestação de Piratininga II foram elaborados seis casos base de simulação. Três deles considerando a energização do banco de capacitores em questão e três deles considerando a manobra de disjuntores durante eventos de curto-circuito trifásico e durante a operação normal da subestação.

3.3.1. Energização do banco de capacitores

A análise da energização do banco de capacitores foi efetuada considerando três situações distintas: a) energização do banco de capacitores sem a instalação dos pára-raios na barra; b) energização do banco de capacitores considerando a instalação dos pára-raios na barra; e c) energização do banco de capacitores considerando a instalação dos pára-raios na barra e a presença de um segundo banco de capacitores já energizado, na função *back to back*.

É importante ressaltar que a análise do comportamento dinâmico do banco de capacitores durante os eventos de energização foram efetuadas sem a presença de cargas conectadas na barra de 88 [kV] da subestação. Sendo assim, as figuras 3, 4 e 5 ilustram os arquivos base do ATPDraw utilizados para as simulações das três situações descritas.

Figura 3: Energização do banco de capacitores

Figura 4: Energização do banco de capacitores com a presença do pára-raios

Figura 5: Energização do banco de capacitores com a presença do pára-raios e do back to back

Para a simulação das condições impostas ao banco de capacitores durante a energização nas três situações distintas, foram empregadas as chaves estatísticas do ATP. Os instantes de fechamento das chaves e, como conseqüência, de energização do banco de capacitores, respeitam uma curva normal cuja média é:

$$t_{médio} = 0,015 [s]$$

e o desvio padrão é:

 $t_{desvio} = 0,00125 [s]$

O tempo total de simulação para todos os casos de simulação foi:

 $t_{simulação} = 0,500 [s]$

A partir dos dados acima foram efetuadas cem simulações de energização do banco para cada uma das três situações descritas (um banco apenas; banco e pára-raios; banco, *back to back* e pára-raios). Os resultados dessas simulações estão apresentados no próximo capítulo.

3.3.2. Abertura dos disjuntores na subestação durante curtos-circuitos

A análise do desempenho do banco de capacitores durante os eventos de abertura de disjuntor após a ocorrência de curto-circuito foi efetuada considerando curtos-circuitos trifásicos em quatro situações distintas: a) curto-circuito na barra de 88 [kV] da subestação com abertura dos disjuntores de proteção da barra; b) curto-circuito no transformador, com abertura dos disjuntores de proteção do respectivo transformador; c) curto-circuito na linha de transmissão entre Interlagos e Piratininga II na metade da linha. Nestas simulações considerou-se o banco de capacitores energizado e a presença dos pára-raios.

É importante ressaltar que a análise do comportamento dinâmico do banco de capacitores durante os eventos de abertura de disjuntor após a ocorrência de curto-circuito foram efetuadas com a presença de cargas conectadas na barra de 88 [kV] da subestação (z_{carga}),

sem a presença do segundo banco de capacitores, na função *back to back*. As figura 6 e 7 ilustram o arquivo base do ATPDraw utilizado para as simulações de curto-circuito e abertura de disjuntor para um defeito na barra de 88 kV.

Figura 6: Abertura do disjuntores de 88 kV para um defeito 3F na barra.

Para a simulação das condições impostas ao banco de capacitores durante a abertura dos disjuntores ocasionada pelos eventos de curto-circuito, foram empregadas as chaves estatísticas e as chaves controladas do ATP. As chaves estatísticas foram utilizadas para produzir os curtos-circuitos trifásicos na barra de 88 [kV] e as chaves controladas por tempo foram utilizadas para simular a abertura tripolar dos disjuntores na barra de 345 [kV].

Da mesma forma que os casos de energização descritos no item anterior, as chaves estatísticas implementadas para a produção dos eventos de curto-circuito respeitam uma curva normal cuja média é:

 $t_{médio} = 0,015 [s]$

e o desvio padrão é:

 $t_{desvio} = 0,00125 [s]$

As chaves controladas por tempo, responsáveis por simular a abertura dos disjuntores da barra de 345 [kV], respeitam a condição de corrente nula para abertura imposta pelo ATP. Portanto, a abertura não ocorre no mesmo instante para todas as chaves, porém varia em torno de:

 $t_{abertura} = 0,170 [s]$

O tempo total de simulação para todos os casos de simulação foi:

 $t_{simulação} = 0,500 [s]$

A partir dos dados acima foram efetuadas cem simulações de curto-circuito. Nas figuras 8 e 9 são apresentados os respectivos circuitos e as correntes de defeito 3F internos ao banco de capacitores.

Figura 8: Defeito 3F interno ao banco de Capacitores.

Figura 9 : Corrente de Defeito no Capacitor.

E nas figuras 10 e 11 são apresentados os respectivos circuitos e as correntes de defeito 3F no meio da linha de 345 kV que interliga a SE Piratininga.

Figura 10: Defeito 3F na Linha de 345 kV .

Figura 11 : Corrente de Defeito na linha de 345 kV.

3.3.3. Manobras dos disjuntores na subestação

A análise do desempenho do banco de capacitores durante os eventos de manobra de disjuntor, quando da operação normal da rede, foi efetuada considerando duas situações distintas: a) manobra dos disjuntores da barra de 345 [kV] com o banco de capacitores energizado; e b) manobra dos disjuntores da barra de 345 [kV] com o banco de capacitores e o segundo banco, na função *back to back*, também energizado. As figuras 12 e 13 ilustram os arquivos implementados em ATPDraw para as duas situações descritas.

Para ambas as simulações foram empregadas as chaves controladas por tempo do ATP. Estas chaves, responsáveis por simular a abertura dos disjuntores da barra de 345 [kV], respeitam a condição de corrente nula para abertura imposta pelo ATP. Portanto, a abertura não ocorre no mesmo instante para todas as chaves, porém varia em torno de:

 $t_{abertura} = 0,170 [s]$

O tempo total de simulação para todos os casos de simulação foi:

 $t_{simulação} = 0,500 [s]$

Figura 12: Manobra de abertura do disjuntor de entrada da subestação

Figura 13: Manobra de abertura do disjuntor de entrada da subestação com a presença do segundo banco, denominado *back to back*

A partir dos dados acima foi efetuada uma simulação de abertura para cada situação. Os resultados dessas simulações estão apresentados no próximo capítulo.

4 – Resultados

Neste capítulo são apresentados os resultados obtidos a partir das simulações efetuadas com os dados descritos no capítulo de Metodologia deste Relatório Técnico. Os itens 4.1 a 4.4 apresentam alguns detalhes de casos representativos das simulações efetuadas e o item 4.5 apresenta a análise estatística de todos os casos de simulação.

4.1 - Energização do banco de capacitores

Figura 15: Tensão na barra de 88 [kV] para a situação (a) descrita no item 3.3.1

Figura 16: Corrente no banco de capacitores para a situação (b) descrita no item 3.3.1

Figura 17: Tensão na barra de 88 [kV] para a situação (b) descrita no item 3.3.1

Figura 18: Corrente no banco de capacitores para a situação (c) descrita no item 3.3.1

Figura 19: Tensão na barra de 88 [kV] para a situação (c) descrita no item 3.3.1

	Valor máximo [V]	Valor mínimo [V]	Média [V]	Desvio Padrão [V]		
		Barra de 88 [kV]				
Fase A	148524	87914	120456	13657		
Fase B	150111	88549	120992	13078		
Fase C	154657	79699	114507	15384		
		Barra de 345 [kV]			
Fase A	399358	304177	357416	23240		
Fase B	413274	305821	355822	20094		
Fase C	398604	298494	344616	21423		
	Banco de capacitores					
Fase A	148524	87915	120457	13657		
Fase B	150111	88549	120993	13078		
Fase C	154657	79699	114507	15384		

Tabela 1: Energização do banco de capacitores sem o segundo banco e sem o MOV

Tabela 2: Energização do banco de capacitores sem o segundo banco e sem o MOV

	Valor máximo [p.u.]	Valor mínimo [p.u.]	Média [p.u.]	Desvio Padrão [p.u.]	
		Barra de 88 [kV]]		
Fase A	2.067091	1.223556	1.676465	0.190081	
Fase B	2.089181	1.232396	1.683920	0.182018	
Fase C	2.152452	1.109223	1.593662	0.214121	
		Barra de 345 [kV]		
Fase A	1.417716	1.079825	1.268823	0.082502	
Fase B	1.467119	1.085663	1.263165	0.071337	
Fase C	1.415041	1.059653	1.223384	0.076055	
Banco de capacitores					
Fase A	2.067091	1.223556	1.676465	0.190081	
Fase B	2.089181	1.232396	1.683920	0.182018	
Fase C	2.152452	1.109223	1.593662	0.214121	

Tabela 3: Energização do banco de capacitores sem o segundo banco e com o MOV

	Valor máximo [V]	Valor mínimo [V]	Média [V]	Desvio Padrão [V]
		Barra de 88 [kV]		
Fase A	150096	85568	121460	12973
Fase B	145232	87820	120748	12176
Fase C	155369	83754	112825	14800
		Barra de 345 [kV	′]	
Fase A	403675	306912	360634	24434
Fase B	402473	302005	352892	16518
Fase C	387956	303480	343022	18455
		Banco de capacitor	res	
Fase A	150096	85568	121460	12973
Fase B	145232	87820	120748	12176
Fase C	155369	83754	112825	14800

	Valor máximo [p.u.]	Valor mínimo [p.u.]	Média [p.u.]	Desvio Padrão [p.u.]			
	Barra de 88 [kV]						
Fase A	2.088983	1.190906	1.690436	0.180555			
Fase B	2.021276	1.222244	1.680521	0.169462			
Fase C	2.162360	1.165656	1.570260	0.205989			
		Barra de 345 [kV	′]				
Fase A	1.433043	1.089534	1.280249	0.086743			
Fase B	1.428774	1.072115	1.252763	0.058642			
Fase C	1.377239	1.077351	1.217723	0.065516			
		Banco de capacito	res				
Fase A	2.088983	1.190906	1.690436	0.180555			
Fase B	2.021276	1.222244	1.680521	0.169462			
Fase C	2.162360	1.165656	1.570260	0.205989			

Tabela 4: Energização do banco de capacitores sem o segundo banco e com o MOV

Tabela 5: Energização do banco de capacitores com o segundo banco e com o MOV

	Valor máximo [V]	Valor mínimo [V]	Média [V]	Desvio Padrão [V]		
		Barra de 88 [kV]]			
Fase A	113907	82711	98455	6829		
Fase B	111425	88012	98827	5678		
Fase C	112134	75928	95586	8547		
		Barra de 345 [kV	']			
Fase A	350538	292591	322478	14428		
Fase B	340346	302571	321079	10032		
Fase C	348011	288177	311090	11467		
	Banco de capacitores					
Fase A	113907	82711	98455	6829		
Fase B	111425	88012	98827	5678		
Fase C	112134	75928	95586	8547		

Tabela 6: Energização do banco de capacitores com o segundo banco e com o MOV

	Valor máximo	Valor mínimo	Média [p.u.]	Desvio	
	[p.u.]	[p.u.]		Padrão [p.u.]	
		Barra de 88 [kV]			
Fase A	1.585321	1.151148	1.370261	0.095056	
Fase B	1.550771	1.224923	1.375430	0.079032	
Fase C	1.560633	1.056734	1.330324	0.118955	
	E	Barra de 345 [kV]		
Fase A	1.244408	1.038694	1.144793	0.051221	
Fase B	1.208224	1.074126	1.139827	0.035616	
Fase C	1.235436	1.023024	1.104368	0.040711	
	Banco de capacitores				
Fase A	1.585321	1.151148	1.370261	0.095056	
Fase B	1.550771	1.224923	1.375430	0.079032	
Fase C	1.560633	1.056734	1.330324	0.118955	

4.2 - Abertura dos disjuntores na subestação durante curtos-circuitos

	Valor máximo [V]	Valor mínimo [V]	Média [V]	Desvio Padrão [V]		
		Barra de 88 [kV]]			
Fase A	144502	110452	128115	9276		
Fase B	138015	118381	123677	2955		
Fase C	133941	111387	120652	6100		
	Barra de 345 [kV]					
Fase A	359164	307141	337869	11390		
Fase B	350331	315827	336783	6754		
Fase C	347434	299257	321963	10262		

Tabela 7: Curto-circuito no transformador

Tabela 8: Curto-circuito no transformador

	Valor máximo [p.u.]	Valor mínimo [p.u.]	Média [p.u.]	Desvio Padrão [p.u.]		
		Barra de 88 [kV]]			
Fase A	2.011127	1.537228	1.783058	0.129105		
Fase B	1.920843	1.647582	1.721288	0.041130		
Fase C	1.864143	1.550247	1.679189	0.084910		
	Barra de 345 [kV]					
Fase A	1.275029	1.090346	1.199432	0.040437		
Fase B	1.243671	1.121183	1.195576	0.023979		
Fase C	1.233388	1.062361	1.142967	0.036430		

Tabela 9: Curto-circuito no capacitor

	Valor máximo [V]	Valor mínimo [V]	Média [V]	Desvio Padrão [V]
		Barra de 88 [kV]]	
Fase A	106150	77789	92395	6249
Fase B	108942	79503	93412	5862
Fase C	100978	75166	87816	6414
		Barra de 345 [kV	′]	
Fase A	346920	289767	316621	13460
Fase B	341099	290914	315449	12405
Fase C	334980	287314	304779	9076

Tabela 10: Curto-circuito no capacitor

	Valor máximo [p.u.]	Valor mínimo [p.u.]	Média [p.u.]	Desvio Padrão [p.u.]
		Barra de 88 [kV]]	
Fase A	1.477355	1.082637	1.285921	0.086973
Fase B	1.516214	1.106501	1.300073	0.081592
Fase C	1.405378	1.046139	1.222194	0.089280
		Barra de 345 [kV	′]	
Fase A	1.231564	1.028669	1.124002	0.047783
Fase B	1.210897	1.032743	1.119840	0.044040
Fase C	1.189176	1.019961	1.081964	0.032222

	Valor máximo [V]	Valor mínimo [V]	Média [V]	Desvio Padrão [V]
		Barra de 88 [kV]]	
Fase A	79553	70787	71411	1738
Fase B	76460	70787	70960	841
Fase C	70788	70788	70788	0.00
		Barra de 345 [kV	′]	
Fase A	342276	298910	320639	12272
Fase B	356658	305599	326834	12720
Fase C	351081	298270	320043	10945

Tabela 11: Curto-circuito na barra de 88 [kV]

Tabela 10: Curto-circuito na barra de 88 [kV]

	Valor máximo [p.u.]	Valor mínimo [p.u.]	Média [p.u.]	Desvio Padrão [p.u.]
		Barra de 88 [kV]		
Fase A	1.107186	0.985196	0.993870	0.024192
Fase B	1.064147	0.985195	0.987593	0.011708
Fase C	0.985196	0.985196	0.985196	0.000000
		Barra de 345 [kV]	
Fase A	1.215078	1.061127	1.138266	0.043569
Fase B	1.266132	1.084873	1.160259	0.045159
Fase C	1.246336	1.058856	1.136151	0.038855

Tabela 12: Curto-circuito na linha de Interlagos

	Valor máximo [V]	Valor mínimo [V]	Média [V]	Desvio Padrão [V]		
	Barra de 88 [kV]					
Fase A	176347	136678	157462	10544		
Fase B	170819	153861	163274	3746		
Fase C	172171	138803	164557	6147		
		Barra de 345 [kV]			
Fase A	505036	416251	452286	18168		
Fase B	517095	441971	484449	17090		
Fase C	521108	440674	474056	15129		

Tabela 13: Curto-circuito na linha de Interlagos

	Valor máximo [p.u.]	Valor mínimo [p.u.]	Média [p.u.]	Desvio Padrão [p.u.]
		Barra de 88 [kV]		
Fase A	2.454327	1.902237	2.191491	0.146747
Fase B	2.377388	2.141369	2.272384	0.052137
Fase C	2.396204	1.931807	2.290236	0.085557
		Barra de 345 [kV]	
Fase A	1.792871	1.477688	1.605610	0.064497
Fase B	1.835682	1.568994	1.719788	0.060672
Fase C	1.849927	1.564388	1.682893	0.053709

Nas tabelas seguir e nas figuras 20 a 23 são apresentadas os valores do consumo de energia e de corrente dos Para-raios nas condições simuladas.

Tabela 14:Energia do pára-raios na condição de energização do banco de capacitores sem
o segundo banco na função back-to-back e sem o reator

	Valor máximo [J]	Valor mínimo [J]	Média [J]	Desvio Padrão [J]
Fase A	4941.861000	38.029375	754.988529	719.526142
Fase B	3754.419360	36.103678	735.273384	726.176112
Fase C	9498.096210	36.235347	555.987627	1175.835325

Tabela 15 :Energia do pára-raios na condição de energização do banco de capacitores com
o segundo banco na função back-to-back e sem o reator

	Valor máximo [J]	Valor mínimo [J]	Média [J]	Desvio Padrão [J]
Fase A	284.746483	37.980741	93.065433	52.573299
Fase B	255.229423	42.137106	91.744336	44.769279
Fase C	234.561447	34.919202	75.454453	41.545596

Tabela 16:Energia do pára-raios na condição de curto-circuito na barra de 88 [kV] sem osegundo banco na função back-to-back e sem o reator

	Valor máximo [J]	Valor mínimo [J]	Média [J]	Desvio Padrão [J]
Fase A	1.119089	0.636999	0.713025	0.094442
Fase B	0.878445	0.450039	0.692962	0.112980
Fase C	0.977441	0.753239	0.820690	0.020593

Tabela 17:Energia do pára-raios na condição de curto-circuito no transformador sem osegundo banco na função back-to-back e sem o reator

	Valor máximo [J]	Valor mínimo [J]	Média [J]	Desvio Padrão [J]
Fase A	4529.485150	71.457395	1272.938979	1250.031362
Fase B	2275.841440	220.025062	440.463791	299.003779
Fase C	2207.250210	117.747683	472.010929	428.868598

Tabela 18 :Energia do pára-raios na condição de curto-circuito na linha Interlagos-Piratininga sem o segundo banco na função back-to-back e sem o reator

	Valor máximo [J]	Valor mínimo [J]	Média [J]	Desvio Padrão [J]
Fase A	112828.344000	2054.749450	25683.633335	23494.540521
Fase B	42140.056800	7166.399060	20488.434549	7661.631048
Fase C	72263.519000	2966.927670	42466.958502	18248.693841

Tabela 19 :Energia do pára-raios na condição de curto-circuito no capacitor sem o segundo
banco na função back-to-back e sem o reator

	Valor máximo [J]	Valor mínimo [J]	Média [J]	Desvio Padrão [J]
Fase A	67.048190	24.939997	36.036784	9.717150
Fase B	103.561602	25.215902	37.014025	11.388182
Fase C	59.139548	24.358767	30.731797	6.941109

Tabela 20:Energia do pára-raios na condição de energização do banco de capacitores sem
o segundo banco na função back-to-back e com o reator

		Valor máximo [J]	Valor mínimo [J]	Média [J]	Desvio Padrão [J]
	Fase A	8203.588130	38.924059	643.721212	1040.651790
	Fase B	5641.828880	52.518665	587.404110	747.704300
	Fase C	6357.156500	34.567867	351.790732	714.948773

Tabela 21:Energia do pára-raios na condição de energização do banco de capacitores com
o segundo banco na função back-to-back e com o reator

	Valor máximo [J]	Valor mínimo [J]	Média [J]	Desvio Padrão [J]
Fase A	3740.277950	40.701625	777.702724	778.579244
Fase B	4413.110520	53.289438	924.422502	753.790308
Fase C	1235.725680	41.000903	218.710721	249.349909

Tabela 22:Energia do pára-raios na condição de curto-circuito na linha Interlagos-Piratininga sem o segundo banco na função back-to-back e com o reator

	Valor máximo [J]	Valor mínimo [J]	Média [J]	Desvio Padrão [J]
Fase A	79979.498400	7660.330190	35103.217953	18398.527691
Fase B	28871.478300	4641.206390	10834.990971	4610.447257
Fase C	54163.996700	391.478126	19667.546027	13752.489549

Figura 20: Energia no Para – Raios para os casos da tabela 20.

Figura 21: Corrente no Para – Raios para os casos da tabela 20.

Figura 22: Energia no Para – Raios para os casos da tabela 22.

Figura 23: Corrente no Para – Raios para os casos da tabela 22.

Nas figuras a seguir são apresentadas as demais condições operativas do banco.

Figura 24: Corrente no banco de capacitores para a situação descrita no item 3.3.2

4.3 - Manobras dos disjuntores na subestação

Figura 26: Corrente no banco de capacitores para a situação (a) descrita no item 3.3.3

Figura 27: Tensão na barra de 88 [kV] para a situação (a) descrita no item 3.3.3

Figura 28: Corrente no banco de capacitores para a situação (a) descrita no item 3.3.3

Figura 29: Tensão na barra de 88 [kV] para a situação (b) descrita no item 3.3.3

5 – Dimensionamento dos Para – Raios e Coordenação de Isolamento.

O para – raio do projeto será dimensionado de acordo com os resultados obtidos através de transitórios de chaveamento apresentados, levando-se em consideração a máxima tensão dinâmica fase- neutro no qual o para-raio estará sujeito para qualquer condição operativa ou defeito simulado no estudo. Uma descarga atmosférica pode chegar a milhares de ampéres mas por pouco tempo ou microsegundos de forma que a energia absorvida pelo mesmo é pequena comparada com a energia absorvida por problemas operativos que envolvem corrente menores mas por um tempo bem maior.

Para o estudo em questão vamos tomar como referência a tensão de 2 pu por 10 s como limite operativo para as tensões obtidas nas simulações e procurando manter uma coordenação de isolamento adequada para o banco de capacitores. Vamos portanto definir Um como a máxima tensão operativa do para-raio que será portanto de 176 kV e Uc como a tensão continua de operação que será de 88 kV e o valor Ur será a tensão de operação do para-raio. De posse das definições acima aplica-se um fator típico de 0,72 sobre Um para se obter o valor Ur ou a tensão de operação do para-raio. Nesse caso Ur deverá ser \geq a 126 kV.

Para o cálculo da distância aproximada entre o banco de capacitores e o para – raio adotam-se a figura 30 e a equação 1 abaixo (Electrical Transmission and Distribution Reference Book – Westhinghouse Electric Corporation Copyright 1950).

Figura 30 – Distância típica entre o para-raio e o banco de capacitores.

$$E_t = E_a + (2 \ x \ \frac{de}{dt} \ x \ \frac{L}{1000})$$
 (01)

Onde :

Et = É a tensão máxima suportável após a primeira reflexão da forma de onda.

Ea = É a tensão Ur do para-raio.

de / dt = Razão da frente de onda em kV / microsegundos.

L = Distância entre entre o para-raio e o terminal da linha de entrada em 88 kV em pés.

Toma-se como referência aqui o catálogo do fabricante ABB e o para –raio do tipo PEXLIM – R. Do mesmo obtêm-se um valor de Ur logo acima do valor de 126 kV especificado que é de 132 kV, e corrente de 1 kA. Para o valor de de / dt vamos adotar um valor de 1000 kV/µs . Vamos procurar manter uma relação de margem de segurança para os impulsos atmosféricos de aproximadamente 96 % que é dada pela equação 2 abaixo.

$$96 = \left(\frac{E_t}{283kV} - 1\right) \quad x \quad 100$$
 (02)

Onde o valor de 283 kV é obtido do catálogo do fabricante. Com o valor de Et igual a 554 kV e utlizando-se a equação 01 acima obtem-se um valor aproximado de L igual a 64 metros.

6 - Conclusões.

 As tensões apresentadas nas tabelas foram obtidas sempre na pior condição de fechamento e abertura dos disjuntores obtidos de forma estatística. O resultados obtidos indicam um tensão de energização próxima ou igual a 2pu, ou seja, o para-raio do capacitor será dimensionado para operar para uma tensão igual ou maior do que esse valor.

 As manobras de abertura devidas a defeitos obtidos igualmente da forma anterior indicam a real necessidade de uso de equipamentos de controle para a respectiva abertura dos disjuntores em condições melhores na forma de onda de tensão, principalmente no setor de 345 KV da SE Piratininga. Como recomendação do estudo sugere-se também uma melhor verificação da TRV(Tensão de Restabelecimento Transitória) dos disjuntores do setor de 88 kV devido a entrada em operação do banco de capacitores.

 Com relação ao item de sobretensões de Curta – Duração ou surtos atmosféricos para a determinação da distância típica recomendada entre o Para-Raios e o Capacitor a equipe de estudos da Farfilho faz os seguintes comentários aos cálculos apresentados no trabalho :

 \rightarrow Para se fazer uma simulação detalhada necessárias as informações referentes a :

Cabos Para-Raios e parâmetros das linhas de 88 kV ligadas a Barra.

Cabos Para-raios das Linhas de 345 kV.

Modelamento das barras de 345 e 88 kV na forma de circuitos R.L e C.

Modelamento e representação das capacitâncias parasitas dos transformadores de força, dos transformadores de corrente e dos divisores capacitivos de potencial.

Representação física das distâncias entre todos os equipamentos na subestação.

 \rightarrow Como esses dados não estão disponíveis a Farfilho recomenda então que sejam tomadas a menor distância possível que a instalação permita entre esses dois equipamentos sem prejuízo da correta operação da planta em pauta. (De 5 a 10 metros).

• Com relação ao dimensionamento do Para-raio a Farfilho recomenda o seguintes dados principais :

Ur ≥ 126 kV Energia de consumo ≥ 0.634 KJ / kV Icc de Interrupção ≥ 25 KA